If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-8x-134=0
a = 1; b = -8; c = -134;
Δ = b2-4ac
Δ = -82-4·1·(-134)
Δ = 600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{600}=\sqrt{100*6}=\sqrt{100}*\sqrt{6}=10\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-10\sqrt{6}}{2*1}=\frac{8-10\sqrt{6}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+10\sqrt{6}}{2*1}=\frac{8+10\sqrt{6}}{2} $
| 5t+(-5)=0 | | -7y-28=0 | | 88w=4w | | -4(2w+2)-w=19 | | x^2-13x-44=0 | | 25-6y=5 | | 3x-2(1-2(x+4))=5x | | p-17=2p+3 | | 5x+3(2x-13)=16 | | 23/4+12/3=o | | 0=4x^2+15x−25 | | f-6=3f+3(f-2) | | 4x2+15x−25=0 | | 28=-7p | | (2x-3)/6=(3x+1)/2 | | 2x-3/6=3x+1/2 | | -30=5(p–1) | | 18h-13h=15h | | -3q+9q=48 | | 3y=y+28 | | 4/5q=32 | | 4x+6=7x-20 | | 2x10=24 | | x+x*0.08=58.5 | | X^3-x+12=12 | | 3x+7=6x-15 | | 3x+7=8x-15 | | 1200=p(1+0.01575)^(20) | | 3z-1=z+23 | | 1x-0.6x=384 | | 13+(4-x)=16 | | 236=26-y |